

Environment Center Charles University in Prague

Estimation of External Cost from Transport

Jan MELICHAR Charles Environment University Center

Ministry of the Environment September 16th, 2010

Overview of state of the art

European research

- 4th, 5th, and 6th EU-framework programmes
 - ExternE Core/Transport (1999): Assessment of Energy-related Transport Externalities
 (Friedrich, R., Bickel, P. 2001: Environmental External Costs of Transport. Springer-Verlag)
 - CAPRI (1999): Concerted Action on Transport Pricing Research Integration
 - RECORDIT (2001): Real Cost Reduction of Door-to-Door Intermodal Transport
 - UNITE (2003): UNification of accounts and marginal costs for transport efficiency
 - HEATCO (2006): Developing Harmonised European Approaches for Transport Costing and Project Assessment
 - GRACE (2007) Generalisation of research on accounts and cost estimation
- ExternE website: www.externe.info
- EC (2008): Handbook with estimates of external costs in the transport sector summarizing the state of the art as regards the valuation of external costs
- INFRAS/IWW study (2004): External costs of transport, IUR.
- National studies: Germany, UK, the Netherlands and Switz.

Czech research

- CUEC (2011): Quantification of external cost of transport in the CR
- UE (2010): Shadow prices of externalities in transport

Methodology

- 1. We follow **ExternE methodology** (see European Commission, 1995, 1999, 2000, 2009, downloadable at www.externe.info)
- 2. Damages caused by pollutants are assessed using **bottom-up approach**, we use **impact pathway analysis**.
- 3. The amount of damage is determined by:
 - type of technology (vehicle, fuel, emission standard)
 - site of activity (urban, suburban, rural)
 - boundaries of analysis (range of fuel cycle, geographical elimination, time horizon, emissions)
 - values of affected population
- 4. Assessment of the relationship between effects (emissions) and physical damage is based on **concentration-response functions**
- Monetary valuation is determined by the preferences of affected population
 - we use economic estimates of welfare changes
 - market prices (crops, building materials)
 - costs (biodiversity loss, cost-of-illness, climate change)
 - non-market values (mortality, morbidity, climate change)

Impact pathway approach (IPA)

POLLUTANT & NOISE EMISSIONS

TRANSPORT
& CHEMICAL
TRANSFORMATION

DIFFERENCES OF PHYSICAL IMPATS

MONETARY VALUATION

The main characteristics of IPA

l.

Dependence of external cost on **spatial specification**: local, regional and global level

11.

Reflecting the whole fuel cycle ⇒ <u>up-stream</u> and <u>down-stream</u>

... fuel extraction and transport, production, operation and dismantling of technology ...

Structure of transport fuel cycle

Case study: assessment of external costs

Road motor vehicles - 27 scenarios

- passenger car, light / heavy duty vehicles, bus
- petrol, diesel, CNG, LPG
- emission categories EURO 2-4
- metropolitan / urban / rural location

Emission factors

- national emission factor database MEFA (Šebor et al., 2002)
- metropolitan 40 km/h, urban 50 km/h, rural 80 km/h
- 0% road slope
- TREMOVE 2.32 and 2.44 (updated from MEET)

Modelling approach

- RiskPoll 1.51 software (Spadaro, 2004)
- meteorological data hourly values (temperature, wind speed and flow direction) - taken from automated immission monitoring (CHMI)
- pollutants: SO₂, NO_X, PM₁₀, CO_{2eqv.}
- assessed impacts: damage to health (mortality, morbidity) and climate change

Population density in Prague (grid 5 km × 5 km)

 ${
m CO2_{eqv}}$ emission characteristic of vehicles assessed, in g/vkm

Concentration-response functions and values for PM_{10}

Concentration-response function	CR slope	Unit values (CZK 2008)
Mortality YOLL [Pope 2002]	2,90E-04	1 199 255
Chronic Bronchitis [Abbey 1995]	1,98E-02	3 898
Restricted activity days [Ostro 1987]	2,07E-06	59 963
Respiratory hospitalization [Dab 1996]	4,14E-04	1 139
Chronic cough, children [Dockery 1989]	2,59E-06	59 963
Congestive heart failure, elderly [Schwartz/Morris 1995]	9,39E-03	1 139
Cough, adult asthmatics [Dusseldorp 1995]	4,56E-03	30
Bronchodilator use, adult asthmatics [Dusseldorp 1995]	1,70E-03	1 139
Lower respiratory symptoms, adult asthmatics [Dusseldorp 1995]	1,87E-03	1 139
Cough, children asthmatics [Pope/Dockery 1992]	5,43E-04	30
Bronchodilator use, children asthmatics [Roemer 1993]	7,20E-04	1 139
Lower respiratory symptoms, children asthmatics [Roemer 1993]	3,92E-05	5 996 276

Valuing climate change impacts

Market price from carbon market (e.g. EU ETS € 14.19

Marginal Abatement Costs

- ExternE 23 €/tCO2: MAC for Europe for emissions reductions required by the Kyoto Protocol for the period 2008-2012.
- Kuik, O. (2007): The Avoidance Costs of Greenhouse Gas Damage: A Meta-Analysis, CASES project, WP3, European Commission.

Social Costs of Climate Change

 Tol, R.S.J. (2005): The Marginal Damage Costs of Carbon Dioxide Emissions, Energ Policy, 33, 2064-2084.

	€ ₂₀₀₈ /tCO ₂	€ ₂₀₀₈ /tC	CZK ₂₀₀₈ /tCO ₂	CZK ₂₀₀₈ /tC
EU ETS - June 2010	14		354	
MAC – ExternE value	23	84	574	2 095
MAC (Kuik 2007)				
mean 2025	24	95	599	2 370
mean 2050	63	250	1 572	6 237
median 2025	16	64	399	1 597
median 250	35	137	873	3 418
MDC (Tol 2005)				
mean	19	67	474	1 671
median	3	11	75	274

External costs of transport in the Czech Rep., in CZK/vkm (2008)

External costs according to damage category – metropolitan and rural area, in CZK/vkm (2008)

External costs varying according to CO₂ value – metropolitan and rural area, in CZK/vkm (2008)

Discussion of the results

- LPG and CNG have the lowest impacts, mainly due to lower human health impacts, HDV and BUS have opposite effects ⇒ one order of magnitude higher
- Results are sensitive to site specific parameters (e.g. population density ⇒ the impacts in big cities are 7x and 13x higher then in small cities and rural areas respectively
- Mortality is the main impact in metropolitan area (54%), impact of GHGs are significant rural area (64%)
- Nitrates have the biggest impact in metropolitan area (81%), impacts of PM and sulphates are negligible, impacts GHG are highest in rural area
- The variability of CO_2 value is significant for the results in rural ($\mathfrak{C}3 26\%$, $\mathfrak{C}63 81\%$) and urban area ($\mathfrak{C}3 15\%$, $\mathfrak{C}63 64\%$), effects in metropolitan area is lower ($\mathfrak{C}3 1\%$, $\mathfrak{C}63 20\%$),

Thanks for your attention!

Contact:

jan.melichar@czp.cuni.cz www.cozp.cuni.cz